Packages

class KMeansModel extends Saveable with Serializable with PMMLExportable

A clustering model for K-means. Each point belongs to the cluster with the closest center.

Annotations
@Since( "0.8.0" )
Linear Supertypes
PMMLExportable, Serializable, Serializable, Saveable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. KMeansModel
  2. PMMLExportable
  3. Serializable
  4. Serializable
  5. Saveable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new KMeansModel(centers: Iterable[Vector])

    A Java-friendly constructor that takes an Iterable of Vectors.

    A Java-friendly constructor that takes an Iterable of Vectors.

    Annotations
    @Since( "1.4.0" )
  2. new KMeansModel(clusterCenters: Array[Vector])
    Annotations
    @Since( "1.1.0" )
  3. new KMeansModel(clusterCenters: Array[Vector], distanceMeasure: String, trainingCost: Double, numIter: Int)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. val clusterCenters: Array[Vector]
    Annotations
    @Since( "1.0.0" )
  7. def computeCost(data: RDD[Vector]): Double

    Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.

    Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data.

    Annotations
    @Since( "0.8.0" )
  8. val distanceMeasure: String
    Annotations
    @Since( "2.4.0" )
  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def formatVersion: String

    Current version of model save/load format.

    Current version of model save/load format.

    Attributes
    protected
    Definition Classes
    KMeansModelSaveable
  13. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  14. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  16. def k: Int

    Total number of clusters.

    Total number of clusters.

    Annotations
    @Since( "0.8.0" )
  17. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  19. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  20. def predict(points: JavaRDD[Vector]): JavaRDD[Integer]

    Maps given points to their cluster indices.

    Maps given points to their cluster indices.

    Annotations
    @Since( "1.0.0" )
  21. def predict(points: RDD[Vector]): RDD[Int]

    Maps given points to their cluster indices.

    Maps given points to their cluster indices.

    Annotations
    @Since( "1.0.0" )
  22. def predict(point: Vector): Int

    Returns the cluster index that a given point belongs to.

    Returns the cluster index that a given point belongs to.

    Annotations
    @Since( "0.8.0" )
  23. def save(sc: SparkContext, path: String): Unit

    Save this model to the given path.

    Save this model to the given path.

    This saves:

    • human-readable (JSON) model metadata to path/metadata/
    • Parquet formatted data to path/data/

    The model may be loaded using Loader.load.

    sc

    Spark context used to save model data.

    path

    Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.

    Definition Classes
    KMeansModelSaveable
    Annotations
    @Since( "1.4.0" )
  24. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  25. def toPMML(): String

    Export the model to a String in PMML format

    Export the model to a String in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Since( "1.4.0" )
  26. def toPMML(outputStream: OutputStream): Unit

    Export the model to the OutputStream in PMML format

    Export the model to the OutputStream in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Since( "1.4.0" )
  27. def toPMML(sc: SparkContext, path: String): Unit

    Export the model to a directory on a distributed file system in PMML format

    Export the model to a directory on a distributed file system in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Since( "1.4.0" )
  28. def toPMML(localPath: String): Unit

    Export the model to a local file in PMML format

    Export the model to a local file in PMML format

    Definition Classes
    PMMLExportable
    Annotations
    @Since( "1.4.0" )
  29. def toString(): String
    Definition Classes
    AnyRef → Any
  30. val trainingCost: Double
    Annotations
    @Since( "2.4.0" )
  31. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from PMMLExportable

Inherited from Serializable

Inherited from Serializable

Inherited from Saveable

Inherited from AnyRef

Inherited from Any

Ungrouped