class DoubleRDDFunctions extends Logging with Serializable
Extra functions available on RDDs of Doubles through an implicit conversion.
- Alphabetic
- By Inheritance
- DoubleRDDFunctions
- Serializable
- Serializable
- Logging
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
histogram(buckets: Array[Double], evenBuckets: Boolean = false): Array[Long]
Compute a histogram using the provided buckets.
Compute a histogram using the provided buckets. The buckets are all open to the right except for the last which is closed. e.g. for the array [1, 10, 20, 50] the buckets are [1, 10) [10, 20) [20, 50] e.g
<=x<10, 10<=x<20, 20<=x<=50
And on the input of 1 and 50 we would have a histogram of 1, 0, 1- Note
If your histogram is evenly spaced (e.g. [0, 10, 20, 30]) this can be switched from an O(log n) insertion to O(1) per element. (where n = # buckets) if you set evenBuckets to true. buckets must be sorted and not contain any duplicates. buckets array must be at least two elements All NaN entries are treated the same. If you have a NaN bucket it must be the maximum value of the last position and all NaN entries will be counted in that bucket.
-
def
histogram(bucketCount: Int): (Array[Double], Array[Long])
Compute a histogram of the data using bucketCount number of buckets evenly spaced between the minimum and maximum of the RDD.
Compute a histogram of the data using bucketCount number of buckets evenly spaced between the minimum and maximum of the RDD. For example if the min value is 0 and the max is 100 and there are two buckets the resulting buckets will be [0, 50) [50, 100]. bucketCount must be at least 1 If the RDD contains infinity, NaN throws an exception If the elements in RDD do not vary (max == min) always returns a single bucket.
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
mean(): Double
Compute the mean of this RDD's elements.
-
def
meanApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble]
Approximate operation to return the mean within a timeout.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
popStdev(): Double
Compute the population standard deviation of this RDD's elements.
Compute the population standard deviation of this RDD's elements.
- Annotations
- @Since( "2.1.0" )
-
def
popVariance(): Double
Compute the population variance of this RDD's elements.
Compute the population variance of this RDD's elements.
- Annotations
- @Since( "2.1.0" )
-
def
sampleStdev(): Double
Compute the sample standard deviation of this RDD's elements (which corrects for bias in estimating the standard deviation by dividing by N-1 instead of N).
-
def
sampleVariance(): Double
Compute the sample variance of this RDD's elements (which corrects for bias in estimating the variance by dividing by N-1 instead of N).
-
def
stats(): StatCounter
Return a org.apache.spark.util.StatCounter object that captures the mean, variance and count of the RDD's elements in one operation.
-
def
stdev(): Double
Compute the population standard deviation of this RDD's elements.
-
def
sum(): Double
Add up the elements in this RDD.
-
def
sumApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble]
Approximate operation to return the sum within a timeout.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
variance(): Double
Compute the population variance of this RDD's elements.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )