Packages

object KMeans extends Serializable

Top-level methods for calling K-means clustering.

Annotations
@Since( "0.8.0" )
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. KMeans
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val K_MEANS_PARALLEL: String
    Annotations
    @Since( "0.8.0" )
  5. val RANDOM: String
    Annotations
    @Since( "0.8.0" )
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  15. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  16. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  18. def toString(): String
    Definition Classes
    AnyRef → Any
  19. def train(data: RDD[Vector], k: Int, maxIterations: Int): KMeansModel

    Trains a k-means model using specified parameters and the default values for unspecified.

    Trains a k-means model using specified parameters and the default values for unspecified.

    Annotations
    @Since( "0.8.0" )
  20. def train(data: RDD[Vector], k: Int, maxIterations: Int, initializationMode: String): KMeansModel

    Trains a k-means model using the given set of parameters.

    Trains a k-means model using the given set of parameters.

    data

    Training points as an RDD of Vector types.

    k

    Number of clusters to create.

    maxIterations

    Maximum number of iterations allowed.

    initializationMode

    The initialization algorithm. This can either be "random" or "k-means||". (default: "k-means||")

    Annotations
    @Since( "2.1.0" )
  21. def train(data: RDD[Vector], k: Int, maxIterations: Int, initializationMode: String, seed: Long): KMeansModel

    Trains a k-means model using the given set of parameters.

    Trains a k-means model using the given set of parameters.

    data

    Training points as an RDD of Vector types.

    k

    Number of clusters to create.

    maxIterations

    Maximum number of iterations allowed.

    initializationMode

    The initialization algorithm. This can either be "random" or "k-means||". (default: "k-means||")

    seed

    Random seed for cluster initialization. Default is to generate seed based on system time.

    Annotations
    @Since( "2.1.0" )
  22. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Deprecated Value Members

  1. def train(data: RDD[Vector], k: Int, maxIterations: Int, runs: Int): KMeansModel

    Trains a k-means model using specified parameters and the default values for unspecified.

    Trains a k-means model using specified parameters and the default values for unspecified.

    Annotations
    @Since( "0.8.0" ) @deprecated
    Deprecated

    (Since version 2.1.0) Use train method without 'runs'

  2. def train(data: RDD[Vector], k: Int, maxIterations: Int, runs: Int, initializationMode: String): KMeansModel

    Trains a k-means model using the given set of parameters.

    Trains a k-means model using the given set of parameters.

    data

    Training points as an RDD of Vector types.

    k

    Number of clusters to create.

    maxIterations

    Maximum number of iterations allowed.

    runs

    This param has no effect since Spark 2.0.0.

    initializationMode

    The initialization algorithm. This can either be "random" or "k-means||". (default: "k-means||")

    Annotations
    @Since( "0.8.0" ) @deprecated
    Deprecated

    (Since version 2.1.0) Use train method without 'runs'

  3. def train(data: RDD[Vector], k: Int, maxIterations: Int, runs: Int, initializationMode: String, seed: Long): KMeansModel

    Trains a k-means model using the given set of parameters.

    Trains a k-means model using the given set of parameters.

    data

    Training points as an RDD of Vector types.

    k

    Number of clusters to create.

    maxIterations

    Maximum number of iterations allowed.

    runs

    This param has no effect since Spark 2.0.0.

    initializationMode

    The initialization algorithm. This can either be "random" or "k-means||". (default: "k-means||")

    seed

    Random seed for cluster initialization. Default is to generate seed based on system time.

    Annotations
    @Since( "1.3.0" ) @deprecated
    Deprecated

    (Since version 2.1.0) Use train method without 'runs'

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped