Packages

class GaussianMixtureModel extends Serializable with Saveable

Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points are drawn from each Gaussian i=1..k with probability w(i); mu(i) and sigma(i) are the respective mean and covariance for each Gaussian distribution i=1..k.

Annotations
@Since( "1.3.0" )
Linear Supertypes
Saveable, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GaussianMixtureModel
  2. Saveable
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GaussianMixtureModel(weights: Array[Double], gaussians: Array[MultivariateGaussian])

    weights

    Weights for each Gaussian distribution in the mixture, where weights(i) is the weight for Gaussian i, and weights.sum == 1

    gaussians

    Array of MultivariateGaussian where gaussians(i) represents the Multivariate Gaussian (Normal) Distribution for Gaussian i

    Annotations
    @Since( "1.3.0" )

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def formatVersion: String

    Current version of model save/load format.

    Current version of model save/load format.

    Attributes
    protected
    Definition Classes
    GaussianMixtureModelSaveable
  10. val gaussians: Array[MultivariateGaussian]
    Annotations
    @Since( "1.3.0" )
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. def k: Int

    Number of gaussians in mixture

    Number of gaussians in mixture

    Annotations
    @Since( "1.3.0" )
  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. def predict(points: JavaRDD[Vector]): JavaRDD[Integer]

    Java-friendly version of predict()

    Java-friendly version of predict()

    Annotations
    @Since( "1.4.0" )
  19. def predict(point: Vector): Int

    Maps given point to its cluster index.

    Maps given point to its cluster index.

    Annotations
    @Since( "1.5.0" )
  20. def predict(points: RDD[Vector]): RDD[Int]

    Maps given points to their cluster indices.

    Maps given points to their cluster indices.

    Annotations
    @Since( "1.3.0" )
  21. def predictSoft(point: Vector): Array[Double]

    Given the input vector, return the membership values to all mixture components.

    Given the input vector, return the membership values to all mixture components.

    Annotations
    @Since( "1.4.0" )
  22. def predictSoft(points: RDD[Vector]): RDD[Array[Double]]

    Given the input vectors, return the membership value of each vector to all mixture components.

    Given the input vectors, return the membership value of each vector to all mixture components.

    Annotations
    @Since( "1.3.0" )
  23. def save(sc: SparkContext, path: String): Unit

    Save this model to the given path.

    Save this model to the given path.

    This saves:

    • human-readable (JSON) model metadata to path/metadata/
    • Parquet formatted data to path/data/

    The model may be loaded using Loader.load.

    sc

    Spark context used to save model data.

    path

    Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.

    Definition Classes
    GaussianMixtureModelSaveable
    Annotations
    @Since( "1.4.0" )
  24. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  25. def toString(): String
    Definition Classes
    AnyRef → Any
  26. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  29. val weights: Array[Double]
    Annotations
    @Since( "1.3.0" )

Inherited from Saveable

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped