class StreamingLogisticRegressionWithSGD extends StreamingLinearAlgorithm[LogisticRegressionModel, LogisticRegressionWithSGD] with Serializable
Train or predict a logistic regression model on streaming data. Training uses
Stochastic Gradient Descent to update the model based on each new batch of
incoming data from a DStream (see LogisticRegressionWithSGD
for model equation)
Each batch of data is assumed to be an RDD of LabeledPoints. The number of data points per batch can vary, but the number of features must be constant. An initial weight vector must be provided.
Use a builder pattern to construct a streaming logistic regression analysis in an application, like:
val model = new StreamingLogisticRegressionWithSGD() .setStepSize(0.5) .setNumIterations(10) .setInitialWeights(Vectors.dense(...)) .trainOn(DStream)
- Annotations
- @Since( "1.3.0" )
- Alphabetic
- By Inheritance
- StreamingLogisticRegressionWithSGD
- Serializable
- Serializable
- StreamingLinearAlgorithm
- Logging
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
StreamingLogisticRegressionWithSGD()
Construct a StreamingLogisticRegression object with default parameters: {stepSize: 0.1, numIterations: 50, miniBatchFraction: 1.0, regParam: 0.0}.
Construct a StreamingLogisticRegression object with default parameters: {stepSize: 0.1, numIterations: 50, miniBatchFraction: 1.0, regParam: 0.0}. Initial weights must be set before using trainOn or predictOn (see
StreamingLinearAlgorithm
)- Annotations
- @Since( "1.3.0" )
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
algorithm: LogisticRegressionWithSGD
The algorithm to use for updating.
The algorithm to use for updating.
- Attributes
- protected
- Definition Classes
- StreamingLogisticRegressionWithSGD → StreamingLinearAlgorithm
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
latestModel(): LogisticRegressionModel
Return the latest model.
Return the latest model.
- Definition Classes
- StreamingLinearAlgorithm
- Annotations
- @Since( "1.1.0" )
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
var
model: Option[LogisticRegressionModel]
The model to be updated and used for prediction.
The model to be updated and used for prediction.
- Attributes
- protected
- Definition Classes
- StreamingLogisticRegressionWithSGD → StreamingLinearAlgorithm
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
predictOn(data: JavaDStream[Vector]): JavaDStream[Double]
Java-friendly version of
predictOn
.Java-friendly version of
predictOn
.- Definition Classes
- StreamingLinearAlgorithm
- Annotations
- @Since( "1.3.0" )
-
def
predictOn(data: DStream[Vector]): DStream[Double]
Use the model to make predictions on batches of data from a DStream
Use the model to make predictions on batches of data from a DStream
- data
DStream containing feature vectors
- returns
DStream containing predictions
- Definition Classes
- StreamingLinearAlgorithm
- Annotations
- @Since( "1.1.0" )
-
def
predictOnValues[K](data: JavaPairDStream[K, Vector]): JavaPairDStream[K, Double]
Java-friendly version of
predictOnValues
.Java-friendly version of
predictOnValues
.- Definition Classes
- StreamingLinearAlgorithm
- Annotations
- @Since( "1.3.0" )
-
def
predictOnValues[K](data: DStream[(K, Vector)])(implicit arg0: ClassTag[K]): DStream[(K, Double)]
Use the model to make predictions on the values of a DStream and carry over its keys.
Use the model to make predictions on the values of a DStream and carry over its keys.
- K
key type
- data
DStream containing feature vectors
- returns
DStream containing the input keys and the predictions as values
- Definition Classes
- StreamingLinearAlgorithm
- Annotations
- @Since( "1.1.0" )
-
def
setInitialWeights(initialWeights: Vector): StreamingLogisticRegressionWithSGD.this.type
Set the initial weights.
Set the initial weights. Default: [0.0, 0.0].
- Annotations
- @Since( "1.3.0" )
-
def
setMiniBatchFraction(miniBatchFraction: Double): StreamingLogisticRegressionWithSGD.this.type
Set the fraction of each batch to use for updates.
Set the fraction of each batch to use for updates. Default: 1.0.
- Annotations
- @Since( "1.3.0" )
-
def
setNumIterations(numIterations: Int): StreamingLogisticRegressionWithSGD.this.type
Set the number of iterations of gradient descent to run per update.
Set the number of iterations of gradient descent to run per update. Default: 50.
- Annotations
- @Since( "1.3.0" )
-
def
setRegParam(regParam: Double): StreamingLogisticRegressionWithSGD.this.type
Set the regularization parameter.
Set the regularization parameter. Default: 0.0.
- Annotations
- @Since( "1.3.0" )
-
def
setStepSize(stepSize: Double): StreamingLogisticRegressionWithSGD.this.type
Set the step size for gradient descent.
Set the step size for gradient descent. Default: 0.1.
- Annotations
- @Since( "1.3.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
trainOn(data: JavaDStream[LabeledPoint]): Unit
Java-friendly version of
trainOn
.Java-friendly version of
trainOn
.- Definition Classes
- StreamingLinearAlgorithm
- Annotations
- @Since( "1.3.0" )
-
def
trainOn(data: DStream[LabeledPoint]): Unit
Update the model by training on batches of data from a DStream.
Update the model by training on batches of data from a DStream. This operation registers a DStream for training the model, and updates the model based on every subsequent batch of data from the stream.
- data
DStream containing labeled data
- Definition Classes
- StreamingLinearAlgorithm
- Annotations
- @Since( "1.1.0" )
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )