Packages

class NaiveBayesModel extends ClassificationModel with Serializable with Saveable

Model for Naive Bayes Classifiers.

Annotations
@Since( "0.9.0" )
Linear Supertypes
Saveable, ClassificationModel, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. NaiveBayesModel
  2. Saveable
  3. ClassificationModel
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def formatVersion: String

    Current version of model save/load format.

    Current version of model save/load format.

    Attributes
    protected
    Definition Classes
    NaiveBayesModelSaveable
  10. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  13. val labels: Array[Double]
    Annotations
    @Since( "1.0.0" )
  14. val modelType: String
    Annotations
    @Since( "1.4.0" )
  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. val pi: Array[Double]
    Annotations
    @Since( "0.9.0" )
  19. def predict(testData: Vector): Double

    Predict values for a single data point using the model trained.

    Predict values for a single data point using the model trained.

    testData

    array representing a single data point

    returns

    predicted category from the trained model

    Definition Classes
    NaiveBayesModelClassificationModel
    Annotations
    @Since( "1.0.0" )
  20. def predict(testData: RDD[Vector]): RDD[Double]

    Predict values for the given data set using the model trained.

    Predict values for the given data set using the model trained.

    testData

    RDD representing data points to be predicted

    returns

    an RDD[Double] where each entry contains the corresponding prediction

    Definition Classes
    NaiveBayesModelClassificationModel
    Annotations
    @Since( "1.0.0" )
  21. def predict(testData: JavaRDD[Vector]): JavaRDD[Double]

    Predict values for examples stored in a JavaRDD.

    Predict values for examples stored in a JavaRDD.

    testData

    JavaRDD representing data points to be predicted

    returns

    a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction

    Definition Classes
    ClassificationModel
    Annotations
    @Since( "1.0.0" )
  22. def predictProbabilities(testData: Vector): Vector

    Predict posterior class probabilities for a single data point using the model trained.

    Predict posterior class probabilities for a single data point using the model trained.

    testData

    array representing a single data point

    returns

    predicted posterior class probabilities from the trained model, in the same order as class labels

    Annotations
    @Since( "1.5.0" )
  23. def predictProbabilities(testData: RDD[Vector]): RDD[Vector]

    Predict values for the given data set using the model trained.

    Predict values for the given data set using the model trained.

    testData

    RDD representing data points to be predicted

    returns

    an RDD[Vector] where each entry contains the predicted posterior class probabilities, in the same order as class labels

    Annotations
    @Since( "1.5.0" )
  24. def save(sc: SparkContext, path: String): Unit

    Save this model to the given path.

    Save this model to the given path.

    This saves:

    • human-readable (JSON) model metadata to path/metadata/
    • Parquet formatted data to path/data/

    The model may be loaded using Loader.load.

    sc

    Spark context used to save model data.

    path

    Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.

    Definition Classes
    NaiveBayesModelSaveable
    Annotations
    @Since( "1.3.0" )
  25. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  26. val theta: Array[Array[Double]]
    Annotations
    @Since( "0.9.0" )
  27. def toString(): String
    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from Saveable

Inherited from ClassificationModel

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped