org.apache.spark.mllib.classification
LogisticRegressionWithSGD
Companion class LogisticRegressionWithSGD
object LogisticRegressionWithSGD extends Serializable
Top-level methods for calling Logistic Regression using Stochastic Gradient Descent.
- Annotations
- @Since( "0.8.0" ) @deprecated
- Deprecated
(Since version 2.0.0) Use ml.classification.LogisticRegression or LogisticRegressionWithLBFGS
- Note
Labels used in Logistic Regression should be {0, 1}
- Alphabetic
- By Inheritance
- LogisticRegressionWithSGD
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(input: RDD[LabeledPoint], numIterations: Int): LogisticRegressionModel
Train a logistic regression model given an RDD of (label, features) pairs.
Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using a step size of 1.0. We use the entire data set to update the gradient in each iteration.
- input
RDD of (label, array of features) pairs.
- numIterations
Number of iterations of gradient descent to run.
- returns
a LogisticRegressionModel which has the weights and offset from training.
- Annotations
- @Since( "1.0.0" )
- Note
Labels used in Logistic Regression should be {0, 1}
-
def
train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double): LogisticRegressionModel
Train a logistic regression model given an RDD of (label, features) pairs.
Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. We use the entire data set to update the gradient in each iteration.
- input
RDD of (label, array of features) pairs.
- numIterations
Number of iterations of gradient descent to run.
- stepSize
Step size to be used for each iteration of Gradient Descent.
- returns
a LogisticRegressionModel which has the weights and offset from training.
- Annotations
- @Since( "1.0.0" )
- Note
Labels used in Logistic Regression should be {0, 1}
-
def
train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, miniBatchFraction: Double): LogisticRegressionModel
Train a logistic regression model given an RDD of (label, features) pairs.
Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses
miniBatchFraction
fraction of the data to calculate the gradient.- input
RDD of (label, array of features) pairs.
- numIterations
Number of iterations of gradient descent to run.
- stepSize
Step size to be used for each iteration of gradient descent.
- miniBatchFraction
Fraction of data to be used per iteration.
- Annotations
- @Since( "1.0.0" )
- Note
Labels used in Logistic Regression should be {0, 1}
-
def
train(input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, miniBatchFraction: Double, initialWeights: Vector): LogisticRegressionModel
Train a logistic regression model given an RDD of (label, features) pairs.
Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed number of iterations of gradient descent using the specified step size. Each iteration uses
miniBatchFraction
fraction of the data to calculate the gradient. The weights used in gradient descent are initialized using the initial weights provided.- input
RDD of (label, array of features) pairs.
- numIterations
Number of iterations of gradient descent to run.
- stepSize
Step size to be used for each iteration of gradient descent.
- miniBatchFraction
Fraction of data to be used per iteration.
- initialWeights
Initial set of weights to be used. Array should be equal in size to the number of features in the data.
- Annotations
- @Since( "1.0.0" )
- Note
Labels used in Logistic Regression should be {0, 1}
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )