class SparseVector extends Vector
A sparse vector represented by an index array and a value array.
- Annotations
- @Since( "1.0.0" ) @SQLUserDefinedType()
- Alphabetic
- By Inheritance
- SparseVector
- Vector
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
SparseVector(size: Int, indices: Array[Int], values: Array[Double])
- size
size of the vector.
- indices
index array, assume to be strictly increasing.
- values
value array, must have the same length as the index array.
- Annotations
- @Since( "1.0.0" )
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
apply(i: Int): Double
Gets the value of the ith element.
-
def
argmax: Int
Find the index of a maximal element.
Find the index of a maximal element. Returns the first maximal element in case of a tie. Returns -1 if vector has length 0.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.5.0" )
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
asML: ml.linalg.SparseVector
Convert this vector to the new mllib-local representation.
Convert this vector to the new mllib-local representation. This does NOT copy the data; it copies references.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "2.0.0" )
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
compressed: Vector
Returns a vector in either dense or sparse format, whichever uses less storage.
Returns a vector in either dense or sparse format, whichever uses less storage.
- Definition Classes
- Vector
- Annotations
- @Since( "1.4.0" )
-
def
copy: SparseVector
Makes a deep copy of this vector.
Makes a deep copy of this vector.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.1.0" )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(other: Any): Boolean
- Definition Classes
- SparseVector → Vector → AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
foreachActive(f: (Int, Double) ⇒ Unit): Unit
Applies a function
f
to all the active elements of dense and sparse vector.Applies a function
f
to all the active elements of dense and sparse vector.- f
the function takes two parameters where the first parameter is the index of the vector with type
Int
, and the second parameter is the corresponding value with typeDouble
.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.6.0" )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
Returns a hash code value for the vector.
Returns a hash code value for the vector. The hash code is based on its size and its first 128 nonzero entries, using a hash algorithm similar to
java.util.Arrays.hashCode
.- Definition Classes
- SparseVector → Vector → AnyRef → Any
-
val
indices: Array[Int]
- Annotations
- @Since( "1.0.0" )
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
numActives: Int
Number of active entries.
Number of active entries. An "active entry" is an element which is explicitly stored, regardless of its value.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.4.0" )
- Note
Inactive entries have value 0.
-
def
numNonzeros: Int
Number of nonzero elements.
Number of nonzero elements. This scans all active values and count nonzeros.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.4.0" )
-
val
size: Int
Size of the vector.
Size of the vector.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.0.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toArray: Array[Double]
Converts the instance to a double array.
Converts the instance to a double array.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.0.0" )
-
def
toDense: DenseVector
Converts this vector to a dense vector.
Converts this vector to a dense vector.
- Definition Classes
- Vector
- Annotations
- @Since( "1.4.0" )
-
def
toJson: String
Converts the vector to a JSON string.
Converts the vector to a JSON string.
- Definition Classes
- SparseVector → Vector
- Annotations
- @Since( "1.6.0" )
-
def
toSparse: SparseVector
Converts this vector to a sparse vector with all explicit zeros removed.
Converts this vector to a sparse vector with all explicit zeros removed.
- Definition Classes
- Vector
- Annotations
- @Since( "1.4.0" )
-
def
toString(): String
- Definition Classes
- SparseVector → AnyRef → Any
-
val
values: Array[Double]
- Annotations
- @Since( "1.0.0" )
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )