object SparseMatrix extends Serializable
Factory methods for org.apache.spark.mllib.linalg.SparseMatrix.
- Annotations
- @Since( "1.3.0" )
- Alphabetic
- By Inheritance
- SparseMatrix
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
fromCOO(numRows: Int, numCols: Int, entries: Iterable[(Int, Int, Double)]): SparseMatrix
Generate a
SparseMatrix
from Coordinate List (COO) format.Generate a
SparseMatrix
from Coordinate List (COO) format. Input must be an array of (i, j, value) tuples. Entries that have duplicate values of i and j are added together. Tuples where value is equal to zero will be omitted.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- entries
Array of (i, j, value) tuples
- returns
The corresponding
SparseMatrix
- Annotations
- @Since( "1.3.0" )
-
def
fromML(m: ml.linalg.SparseMatrix): SparseMatrix
Convert new linalg type to spark.mllib type.
Convert new linalg type to spark.mllib type. Light copy; only copies references
- Annotations
- @Since( "2.0.0" )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
spdiag(vector: Vector): SparseMatrix
Generate a diagonal matrix in
SparseMatrix
format from the supplied values.Generate a diagonal matrix in
SparseMatrix
format from the supplied values.- vector
a
Vector
that will form the values on the diagonal of the matrix- returns
Square
SparseMatrix
with sizevalues.length
xvalues.length
and non-zerovalues
on the diagonal
- Annotations
- @Since( "1.3.0" )
-
def
speye(n: Int): SparseMatrix
Generate an Identity Matrix in
SparseMatrix
format.Generate an Identity Matrix in
SparseMatrix
format.- n
number of rows and columns of the matrix
- returns
SparseMatrix
with sizen
xn
and values of ones on the diagonal
- Annotations
- @Since( "1.3.0" )
-
def
sprand(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix
Generate a
SparseMatrix
consisting ofi.i.d
.Generate a
SparseMatrix
consisting ofi.i.d
. uniform random numbers. The number of non-zero elements equal the ceiling ofnumRows
xnumCols
xdensity
- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
SparseMatrix
with sizenumRows
xnumCols
and values in U(0, 1)
- Annotations
- @Since( "1.3.0" )
-
def
sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix
Generate a
SparseMatrix
consisting ofi.i.d
.Generate a
SparseMatrix
consisting ofi.i.d
. gaussian random numbers.- numRows
number of rows of the matrix
- numCols
number of columns of the matrix
- density
the desired density for the matrix
- rng
a random number generator
- returns
SparseMatrix
with sizenumRows
xnumCols
and values in N(0, 1)
- Annotations
- @Since( "1.3.0" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )