final class DataFrameNaFunctions extends AnyRef
Functionality for working with missing data in DataFrame
s.
- Annotations
- @Stable()
- Since
1.3.1
- Alphabetic
- By Inheritance
- DataFrameNaFunctions
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
drop(minNonNulls: Int, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFrame
that drops rows containing less thanminNonNulls
non-null and non-NaN values in the specified columns.(Scala-specific) Returns a new
DataFrame
that drops rows containing less thanminNonNulls
non-null and non-NaN values in the specified columns.- Since
1.3.1
-
def
drop(minNonNulls: Int, cols: Array[String]): DataFrame
Returns a new
DataFrame
that drops rows containing less thanminNonNulls
non-null and non-NaN values in the specified columns.Returns a new
DataFrame
that drops rows containing less thanminNonNulls
non-null and non-NaN values in the specified columns.- Since
1.3.1
-
def
drop(minNonNulls: Int): DataFrame
Returns a new
DataFrame
that drops rows containing less thanminNonNulls
non-null and non-NaN values.Returns a new
DataFrame
that drops rows containing less thanminNonNulls
non-null and non-NaN values.- Since
1.3.1
-
def
drop(how: String, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFrame
that drops rows containing null or NaN values in the specified columns.(Scala-specific) Returns a new
DataFrame
that drops rows containing null or NaN values in the specified columns.If
how
is "any", then drop rows containing any null or NaN values in the specified columns. Ifhow
is "all", then drop rows only if every specified column is null or NaN for that row.- Since
1.3.1
-
def
drop(how: String, cols: Array[String]): DataFrame
Returns a new
DataFrame
that drops rows containing null or NaN values in the specified columns.Returns a new
DataFrame
that drops rows containing null or NaN values in the specified columns.If
how
is "any", then drop rows containing any null or NaN values in the specified columns. Ifhow
is "all", then drop rows only if every specified column is null or NaN for that row.- Since
1.3.1
-
def
drop(cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFrame
that drops rows containing any null or NaN values in the specified columns.(Scala-specific) Returns a new
DataFrame
that drops rows containing any null or NaN values in the specified columns.- Since
1.3.1
-
def
drop(cols: Array[String]): DataFrame
Returns a new
DataFrame
that drops rows containing any null or NaN values in the specified columns.Returns a new
DataFrame
that drops rows containing any null or NaN values in the specified columns.- Since
1.3.1
-
def
drop(how: String): DataFrame
Returns a new
DataFrame
that drops rows containing null or NaN values.Returns a new
DataFrame
that drops rows containing null or NaN values.If
how
is "any", then drop rows containing any null or NaN values. Ifhow
is "all", then drop rows only if every column is null or NaN for that row.- Since
1.3.1
-
def
drop(): DataFrame
Returns a new
DataFrame
that drops rows containing any null or NaN values.Returns a new
DataFrame
that drops rows containing any null or NaN values.- Since
1.3.1
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
fill(valueMap: Map[String, Any]): DataFrame
(Scala-specific) Returns a new
DataFrame
that replaces null values.(Scala-specific) Returns a new
DataFrame
that replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type:
Int
,Long
,Float
,Double
,String
,Boolean
. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
df.na.fill(Map( "A" -> "unknown", "B" -> 1.0 ))
- Since
1.3.1
-
def
fill(valueMap: Map[String, Any]): DataFrame
Returns a new
DataFrame
that replaces null values.Returns a new
DataFrame
that replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type:
Integer
,Long
,Float
,Double
,String
,Boolean
. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
import com.google.common.collect.ImmutableMap; df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0));
- Since
1.3.1
-
def
fill(value: Boolean, cols: Array[String]): DataFrame
Returns a new
DataFrame
that replaces null values in specified boolean columns.Returns a new
DataFrame
that replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
2.3.0
-
def
fill(value: Boolean, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFrame
that replaces null values in specified boolean columns.(Scala-specific) Returns a new
DataFrame
that replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
2.3.0
-
def
fill(value: Boolean): DataFrame
Returns a new
DataFrame
that replaces null values in boolean columns withvalue
.Returns a new
DataFrame
that replaces null values in boolean columns withvalue
.- Since
2.3.0
-
def
fill(value: String, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFrame
that replaces null values in specified string columns.(Scala-specific) Returns a new
DataFrame
that replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
1.3.1
-
def
fill(value: String, cols: Array[String]): DataFrame
Returns a new
DataFrame
that replaces null values in specified string columns.Returns a new
DataFrame
that replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
1.3.1
-
def
fill(value: Double, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
1.3.1
-
def
fill(value: Long, cols: Seq[String]): DataFrame
(Scala-specific) Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
2.2.0
-
def
fill(value: Double, cols: Array[String]): DataFrame
Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns.Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
1.3.1
-
def
fill(value: Long, cols: Array[String]): DataFrame
Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns.Returns a new
DataFrame
that replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
2.2.0
-
def
fill(value: String): DataFrame
Returns a new
DataFrame
that replaces null values in string columns withvalue
.Returns a new
DataFrame
that replaces null values in string columns withvalue
.- Since
1.3.1
-
def
fill(value: Double): DataFrame
Returns a new
DataFrame
that replaces null or NaN values in numeric columns withvalue
.Returns a new
DataFrame
that replaces null or NaN values in numeric columns withvalue
.- Since
1.3.1
-
def
fill(value: Long): DataFrame
Returns a new
DataFrame
that replaces null or NaN values in numeric columns withvalue
.Returns a new
DataFrame
that replaces null or NaN values in numeric columns withvalue
.- Since
2.2.0
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
replace[T](cols: Seq[String], replacement: Map[T, T]): DataFrame
(Scala-specific) Replaces values matching keys in
replacement
map.(Scala-specific) Replaces values matching keys in
replacement
map.// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed"));
- cols
list of columns to apply the value replacement. If
col
is "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacement
map must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
-
def
replace[T](col: String, replacement: Map[T, T]): DataFrame
(Scala-specific) Replaces values matching keys in
replacement
map.(Scala-specific) Replaces values matching keys in
replacement
map.// Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", Map("UNKNOWN" -> "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", Map("UNKNOWN" -> "unnamed"));
- col
name of the column to apply the value replacement. If
col
is "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacement
map must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
-
def
replace[T](cols: Array[String], replacement: Map[T, T]): DataFrame
Replaces values matching keys in
replacement
map with the corresponding values.Replaces values matching keys in
replacement
map with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed"));
- cols
list of columns to apply the value replacement. If
col
is "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacement
map must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
-
def
replace[T](col: String, replacement: Map[T, T]): DataFrame
Replaces values matching keys in
replacement
map with the corresponding values.Replaces values matching keys in
replacement
map with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", ImmutableMap.of("UNKNOWN", "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", ImmutableMap.of("UNKNOWN", "unnamed"));
- col
name of the column to apply the value replacement. If
col
is "*", replacement is applied on all string, numeric or boolean columns.- replacement
value replacement map. Key and value of
replacement
map must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
- Since
1.3.1
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )