Packages

class IsotonicRegressionModel extends Serializable with Saveable

Regression model for isotonic regression.

Annotations
@Since( "1.3.0" )
Linear Supertypes
Saveable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsotonicRegressionModel
  2. Saveable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new IsotonicRegressionModel(boundaries: Iterable[Double], predictions: Iterable[Double], isotonic: Boolean)

    A Java-friendly constructor that takes two Iterable parameters and one Boolean parameter.

    A Java-friendly constructor that takes two Iterable parameters and one Boolean parameter.

    Annotations
    @Since( "1.4.0" )
  2. new IsotonicRegressionModel(boundaries: Array[Double], predictions: Array[Double], isotonic: Boolean)

    boundaries

    Array of boundaries for which predictions are known. Boundaries must be sorted in increasing order.

    predictions

    Array of predictions associated to the boundaries at the same index. Results of isotonic regression and therefore monotone.

    isotonic

    indicates whether this is isotonic or antitonic.

    Annotations
    @Since( "1.3.0" )

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. val boundaries: Array[Double]
    Annotations
    @Since( "1.3.0" )
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. def formatVersion: String

    Current version of model save/load format.

    Current version of model save/load format.

    Attributes
    protected
    Definition Classes
    IsotonicRegressionModelSaveable
  11. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  12. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  13. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  14. val isotonic: Boolean
    Annotations
    @Since( "1.3.0" )
  15. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  16. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  17. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  18. def predict(testData: Double): Double

    Predict a single label.

    Predict a single label. Using a piecewise linear function.

    testData

    Feature to be labeled.

    returns

    Predicted label. 1) If testData exactly matches a boundary then associated prediction is returned. In case there are multiple predictions with the same boundary then one of them is returned. Which one is undefined (same as java.util.Arrays.binarySearch). 2) If testData is lower or higher than all boundaries then first or last prediction is returned respectively. In case there are multiple predictions with the same boundary then the lowest or highest is returned respectively. 3) If testData falls between two values in boundary array then prediction is treated as piecewise linear function and interpolated value is returned. In case there are multiple values with the same boundary then the same rules as in 2) are used.

    Annotations
    @Since( "1.3.0" )
  19. def predict(testData: JavaDoubleRDD): JavaDoubleRDD

    Predict labels for provided features.

    Predict labels for provided features. Using a piecewise linear function.

    testData

    Features to be labeled.

    returns

    Predicted labels.

    Annotations
    @Since( "1.3.0" )
  20. def predict(testData: RDD[Double]): RDD[Double]

    Predict labels for provided features.

    Predict labels for provided features. Using a piecewise linear function.

    testData

    Features to be labeled.

    returns

    Predicted labels.

    Annotations
    @Since( "1.3.0" )
  21. val predictions: Array[Double]
    Annotations
    @Since( "1.3.0" )
  22. def save(sc: SparkContext, path: String): Unit

    Save this model to the given path.

    Save this model to the given path.

    This saves:

    • human-readable (JSON) model metadata to path/metadata/
    • Parquet formatted data to path/data/

    The model may be loaded using Loader.load.

    sc

    Spark context used to save model data.

    path

    Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception.

    Definition Classes
    IsotonicRegressionModelSaveable
    Annotations
    @Since( "1.4.0" )
  23. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  24. def toString(): String
    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from Saveable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped