Packages

o

org.apache.spark.ml.stat

ChiSquareTest

object ChiSquareTest

:: Experimental ::

Chi-square hypothesis testing for categorical data.

See Wikipedia for more information on the Chi-squared test.

Annotations
@Experimental() @Since( "2.2.0" )
Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ChiSquareTest
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  10. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  11. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  14. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  15. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  16. def test(dataset: DataFrame, featuresCol: String, labelCol: String): DataFrame

    Conduct Pearson's independence test for every feature against the label.

    Conduct Pearson's independence test for every feature against the label. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the Chi-squared statistic is computed. All label and feature values must be categorical.

    The null hypothesis is that the occurrence of the outcomes is statistically independent.

    dataset

    DataFrame of categorical labels and categorical features. Real-valued features will be treated as categorical for each distinct value.

    featuresCol

    Name of features column in dataset, of type Vector (VectorUDT)

    labelCol

    Name of label column in dataset, of any numerical type

    returns

    DataFrame containing the test result for every feature against the label. This DataFrame will contain a single Row with the following fields:

    • pValues: Vector
    • degreesOfFreedom: Array[Int]
    • statistics: Vector Each of these fields has one value per feature.
    Annotations
    @Since( "2.2.0" )
  17. def toString(): String
    Definition Classes
    AnyRef → Any
  18. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from AnyRef

Inherited from Any

Members