Packages

c

org.apache.spark.ml.regression

LinearRegressionTrainingSummary

class LinearRegressionTrainingSummary extends LinearRegressionSummary

:: Experimental :: Linear regression training results. Currently, the training summary ignores the training weights except for the objective trace.

Annotations
@Since( "1.5.0" ) @Experimental()
Linear Supertypes
LinearRegressionSummary, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LinearRegressionTrainingSummary
  2. LinearRegressionSummary
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  5. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  6. lazy val coefficientStandardErrors: Array[Double]

    Standard error of estimated coefficients and intercept.

    Standard error of estimated coefficients and intercept. This value is only available when using the "normal" solver.

    If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

    Definition Classes
    LinearRegressionSummary
    See also

    LinearRegression.solver

  7. val degreesOfFreedom: Long

    Degrees of freedom

    Degrees of freedom

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "2.2.0" )
  8. lazy val devianceResiduals: Array[Double]

    The weighted residuals, the usual residuals rescaled by the square root of the instance weights.

    The weighted residuals, the usual residuals rescaled by the square root of the instance weights.

    Definition Classes
    LinearRegressionSummary
  9. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  11. val explainedVariance: Double

    Returns the explained variance regression score.

    Returns the explained variance regression score. explainedVariance = 1 - variance(y - \hat{y}) / variance(y) Reference: Wikipedia explain variation

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "1.5.0" )
    Note

    This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

  12. val featuresCol: String
    Definition Classes
    LinearRegressionSummary
  13. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  15. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  16. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  17. val labelCol: String
    Definition Classes
    LinearRegressionSummary
  18. val meanAbsoluteError: Double

    Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

    Returns the mean absolute error, which is a risk function corresponding to the expected value of the absolute error loss or l1-norm loss.

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "1.5.0" )
    Note

    This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

  19. val meanSquaredError: Double

    Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

    Returns the mean squared error, which is a risk function corresponding to the expected value of the squared error loss or quadratic loss.

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "1.5.0" )
    Note

    This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

  20. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  21. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  22. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  23. lazy val numInstances: Long

    Number of instances in DataFrame predictions

    Number of instances in DataFrame predictions

    Definition Classes
    LinearRegressionSummary
  24. val objectiveHistory: Array[Double]
  25. lazy val pValues: Array[Double]

    Two-sided p-value of estimated coefficients and intercept.

    Two-sided p-value of estimated coefficients and intercept. This value is only available when using the "normal" solver.

    If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

    Definition Classes
    LinearRegressionSummary
    See also

    LinearRegression.solver

  26. val predictionCol: String
    Definition Classes
    LinearRegressionSummary
  27. val predictions: DataFrame
    Definition Classes
    LinearRegressionSummary
  28. val r2: Double

    Returns R2, the coefficient of determination.

    Returns R2, the coefficient of determination. Reference: Wikipedia coefficient of determination

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "1.5.0" )
    Note

    This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

  29. val r2adj: Double

    Returns Adjusted R2, the adjusted coefficient of determination.

    Returns Adjusted R2, the adjusted coefficient of determination. Reference: Wikipedia coefficient of determination

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "2.3.0" )
    Note

    This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

  30. lazy val residuals: DataFrame

    Residuals (label - predicted value)

    Residuals (label - predicted value)

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "1.5.0" ) @transient()
  31. val rootMeanSquaredError: Double

    Returns the root mean squared error, which is defined as the square root of the mean squared error.

    Returns the root mean squared error, which is defined as the square root of the mean squared error.

    Definition Classes
    LinearRegressionSummary
    Annotations
    @Since( "1.5.0" )
    Note

    This ignores instance weights (setting all to 1.0) from LinearRegression.weightCol. This will change in later Spark versions.

  32. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  33. lazy val tValues: Array[Double]

    T-statistic of estimated coefficients and intercept.

    T-statistic of estimated coefficients and intercept. This value is only available when using the "normal" solver.

    If LinearRegression.fitIntercept is set to true, then the last element returned corresponds to the intercept.

    Definition Classes
    LinearRegressionSummary
    See also

    LinearRegression.solver

  34. def toString(): String
    Definition Classes
    AnyRef → Any
  35. val totalIterations: Int

    Number of training iterations until termination

    Number of training iterations until termination

    This value is only available when using the "l-bfgs" solver.

    Annotations
    @Since( "1.5.0" )
    See also

    LinearRegression.solver

  36. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )

Inherited from LinearRegressionSummary

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Members