Packages

  • package root
    Definition Classes
    root
  • package org
    Definition Classes
    root
  • package apache
    Definition Classes
    org
  • package spark

    Core Spark functionality.

    Core Spark functionality. org.apache.spark.SparkContext serves as the main entry point to Spark, while org.apache.spark.rdd.RDD is the data type representing a distributed collection, and provides most parallel operations.

    In addition, org.apache.spark.rdd.PairRDDFunctions contains operations available only on RDDs of key-value pairs, such as groupByKey and join; org.apache.spark.rdd.DoubleRDDFunctions contains operations available only on RDDs of Doubles; and org.apache.spark.rdd.SequenceFileRDDFunctions contains operations available on RDDs that can be saved as SequenceFiles. These operations are automatically available on any RDD of the right type (e.g. RDD[(Int, Int)] through implicit conversions.

    Java programmers should reference the org.apache.spark.api.java package for Spark programming APIs in Java.

    Classes and methods marked with Experimental are user-facing features which have not been officially adopted by the Spark project. These are subject to change or removal in minor releases.

    Classes and methods marked with Developer API are intended for advanced users want to extend Spark through lower level interfaces. These are subject to changes or removal in minor releases.

    Definition Classes
    apache
  • package ml

    DataFrame-based machine learning APIs to let users quickly assemble and configure practical machine learning pipelines.

    DataFrame-based machine learning APIs to let users quickly assemble and configure practical machine learning pipelines.

    Definition Classes
    spark
  • package fpm
    Definition Classes
    ml
  • FPGrowth
  • FPGrowthModel
  • PrefixSpan

class FPGrowthModel extends Model[FPGrowthModel] with FPGrowthParams with MLWritable

:: Experimental :: Model fitted by FPGrowth.

Annotations
@Since( "2.2.0" ) @Experimental()
Linear Supertypes
MLWritable, FPGrowthParams, HasPredictionCol, Model[FPGrowthModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. FPGrowthModel
  2. MLWritable
  3. FPGrowthParams
  4. HasPredictionCol
  5. Model
  6. Transformer
  7. PipelineStage
  8. Logging
  9. Params
  10. Serializable
  11. Serializable
  12. Identifiable
  13. AnyRef
  14. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def associationRules: DataFrame

    Get association rules fitted using the minConfidence.

    Get association rules fitted using the minConfidence. Returns a dataframe with four fields, "antecedent", "consequent", "confidence" and "lift", where "antecedent" and "consequent" are Array[T], whereas "confidence" and "lift" are Double.

    Annotations
    @Since( "2.2.0" ) @transient()
  7. final def clear(param: Param[_]): FPGrowthModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  8. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  9. def copy(extra: ParamMap): FPGrowthModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    FPGrowthModelModelTransformerPipelineStageParams
    Annotations
    @Since( "2.2.0" )
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  15. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  16. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  17. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  18. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  19. val freqItemsets: DataFrame
    Annotations
    @Since( "2.2.0" )
  20. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  21. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  22. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  23. def getItemsCol: String

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  24. def getMinConfidence: Double

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  25. def getMinSupport: Double

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  26. def getNumPartitions: Int

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  27. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  28. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  29. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  30. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  31. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  32. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  33. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  34. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  35. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  36. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  37. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  38. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  39. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  40. val itemsCol: Param[String]

    Items column name.

    Items column name. Default: "items"

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  41. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  42. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  43. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  44. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  45. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  46. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  47. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  48. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  49. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  50. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  51. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  52. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  53. val minConfidence: DoubleParam

    Minimal confidence for generating Association Rule.

    Minimal confidence for generating Association Rule. minConfidence will not affect the mining for frequent itemsets, but will affect the association rules generation. Default: 0.8

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  54. val minSupport: DoubleParam

    Minimal support level of the frequent pattern.

    Minimal support level of the frequent pattern. [0.0, 1.0]. Any pattern that appears more than (minSupport * size-of-the-dataset) times will be output in the frequent itemsets. Default: 0.3

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  55. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  56. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  57. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  58. val numPartitions: IntParam

    Number of partitions (at least 1) used by parallel FP-growth.

    Number of partitions (at least 1) used by parallel FP-growth. By default the param is not set, and partition number of the input dataset is used.

    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  59. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  60. var parent: Estimator[FPGrowthModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  61. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  62. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  63. final def set(paramPair: ParamPair[_]): FPGrowthModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  64. final def set(param: String, value: Any): FPGrowthModel.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  65. final def set[T](param: Param[T], value: T): FPGrowthModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  66. final def setDefault(paramPairs: ParamPair[_]*): FPGrowthModel.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  67. final def setDefault[T](param: Param[T], value: T): FPGrowthModel.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  68. def setItemsCol(value: String): FPGrowthModel.this.type

    Annotations
    @Since( "2.2.0" )
  69. def setMinConfidence(value: Double): FPGrowthModel.this.type

    Annotations
    @Since( "2.2.0" )
  70. def setParent(parent: Estimator[FPGrowthModel]): FPGrowthModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  71. def setPredictionCol(value: String): FPGrowthModel.this.type

    Annotations
    @Since( "2.2.0" )
  72. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  73. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  74. def transform(dataset: Dataset[_]): DataFrame

    The transform method first generates the association rules according to the frequent itemsets.

    The transform method first generates the association rules according to the frequent itemsets. Then for each transaction in itemsCol, the transform method will compare its items against the antecedents of each association rule. If the record contains all the antecedents of a specific association rule, the rule will be considered as applicable and its consequents will be added to the prediction result. The transform method will summarize the consequents from all the applicable rules as prediction. The prediction column has the same data type as the input column(Array[T]) and will not contain existing items in the input column. The null values in the itemsCol columns are treated as empty sets. WARNING: internally it collects association rules to the driver and uses broadcast for efficiency. This may bring pressure to driver memory for large set of association rules.

    Definition Classes
    FPGrowthModelTransformer
    Annotations
    @Since( "2.2.0" )
  75. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  76. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  77. def transformSchema(schema: StructType): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    FPGrowthModelPipelineStage
    Annotations
    @Since( "2.2.0" )
  78. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  79. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    FPGrowthModelIdentifiable
    Annotations
    @Since( "2.2.0" )
  80. def validateAndTransformSchema(schema: StructType): StructType

    Validates and transforms the input schema.

    Validates and transforms the input schema.

    schema

    input schema

    returns

    output schema

    Attributes
    protected
    Definition Classes
    FPGrowthParams
    Annotations
    @Since( "2.2.0" )
  81. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  82. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  83. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  84. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    FPGrowthModelMLWritable
    Annotations
    @Since( "2.2.0" )

Inherited from MLWritable

Inherited from FPGrowthParams

Inherited from HasPredictionCol

Inherited from Model[FPGrowthModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter getters